HIV integrase (HIV-IN), one of three HIV enzymes, is a target for the treatment of AIDS, but the full biological assembly has been difficult to characterize, hampering inhibitor design. The recent crystallographic structures of integrase from prototype foamy virus (PFV-IN) with bound DNA were a breakthrough, revealing how viral DNA organizes two integrase dimers into a tetramer that has the two active sites appropriately spaced for insertion of the viral DNA into host DNA. . Instead, we found two symmetry-related positions for the PFV-IN CTD that indicate formation of a CTD dimer between the two active sites. Our predicted CTD dimer is consistent with crosslinking studies showing interactions of the CTD with viral DNA that appear to be blocked in the PFV-IN structures. The CTD dimer can insert two arginine-rich loops between the two bound vDNA molecules and the host DNA, a region that is unoccupied in the PFV-IN crystallographic structures. The positive potential from these two loops would alleviate the large negative potential created by the close proximity of two viral vDNA ends, helping to bring together the two active sites and assisting host DNA binding. This study demonstrates the ability of computational docking to evaluate complex crystallographic assemblies, identify interactions that are influenced by the crystal environment, and provide plausible alternatives.