We performed a three-phase genome-wide association study (GWAS) using cases and controls from a genetically isolated population, Ashkenazi Jews (AJ), to identify loci associated with breast cancer risk. In the first phase, we compared allele frequencies of 150,080 SNPs in 249 high-risk, BRCA1/2 mutation-negative AJ familial cases and 299 cancer-free AJ controls using 2 and the Cochran-Armitage trend tests. In the second phase, we genotyped 343 SNPs from 123 regions most significantly associated from stage 1, including 4 SNPs from the FGFR2 region, in 950 consecutive AJ breast cancer cases and 979 age-matched AJ controls. We replicated major associations in a third independent set of 243 AJ cases and 187 controls. We obtained a significant allele P value of association with AJ breast cancer in the FGFR2 region (P ؍ 1.5 ؋ 10 ؊5 , odds ratio (OR) 1.26, 95% confidence interval (CI) 1.13-1.40 at rs1078806 for all phases combined). In addition, we found a risk locus in a region of chromosome 6q22.33 (P ؍ 2.9 ؋ 10 ؊8 , OR 1.41, 95% CI 1.25-1.59 at rs2180341). Using several SNPs at each implicated locus, we were able to verify associations and impute haplotypes. The major haplotype at the 6q22.33 locus conferred protection from disease, whereas the minor haplotype conferred risk. Candidate genes in the 6q22.33 region include ECHDC1, which encodes a protein involved in mitochondrial fatty acid oxidation, and also RNF146, which encodes a ubiquitin protein ligase, both known pathways in breast cancer pathogenesis.genomics ͉ mapping ͉ disease ͉ predisposition ͉ SNP C ohort and twin studies have indicated that 5-15% of incident breast cancer cases result from autosomal-dominant cancer susceptibility (1-5). However, only Ϸ40% of the familial aggregation of breast cancers can be explained by mutations in BRCA1, BRCA2, or other identified cancer susceptibility genes (6). Attempts to use linkage strategies to localize other genes associated with an inherited predisposition to cancer have been hampered by genetic heterogeneity, decreased penetrance, and chance clustering (7-12). Candidate gene studies in multiplex kindreds affected by breast cancer have implicated rare variants of CHEK2, ATM, BRIP1, and PALB2 in the subset of families lacking BRCA mutations, but in most cases, the rarity and small effect sizes of these associations have precluded clinical application (13). Association studies of biologically plausible candidate genes have identified low-penetrance susceptibility alleles in pathways of carcinogen metabolism, inflammation and immune response, DNA metabolism and DNA repair as well as other known oncogenes and tumor suppressor genes (14-17). Most recently, two groups have carried out genome-wide association studies (GWAS) of selected kindreds and unselected individuals affected by breast cancer (18,19). These studies have implicated a locus near FGFR2 as associated with an Ϸ1.2-fold increased risk of the disease. To add to the potential power of the GWAS approach, we have proposed and validated the use of a genet...