Cocaine is a widely abused substance with psychostimulant effects that are attributed to inhibition of the dopamine transporter (DAT). We present molecular models for DAT binding of cocaine and cocaine analogs constructed from the high-resolution structure of the bacterial transporter homolog LeuT. Our models suggest that the binding site for cocaine and cocaine analogs is deeply buried between transmembrane segments 1, 3, 6 and 8, and overlaps with the binding sites for the substrates dopamine and amphetamine, as well as for benztropine-like DAT inhibitors. We validated our models by detailed mutagenesis and by trapping the radiolabeled cocaine analog [ 3 H]CFT in the transporter, either by cross-linking engineered cysteines or with an engineered Zn 2+ -binding site that was situated extracellularly to the predicted common binding pocket. Our data demonstrate the molecular basis for the competitive inhibition of dopamine transport by cocaine.Correspondence should be addressed to U.G. (E-mail: gether@sund.ku.dk). Note: Supplementary information is available on the Nature Neuroscience website.
AUTHOR CONTRIBUTIONST.B. designed and performed the computational experiments, analyzed the data and wrote the manuscript draft together with C.J.L. J.K. generated mutants, carried out pharmacological analyses and contributed to the data analysis. M.L.B. and K.R. generated mutants and carried out pharmacological analyses. L.S. contributed to the computational experiments and manuscript refinement. L.G. participated in the design and performance of the computational experiments. A.H.N. contributed with ideas, benztropine analogues and provided expertise in the pharmacology and medicinal chemistry of DAT inhibitors. J.A.J. contributed with ideas and to the design of experiments and writing of the manuscript. H.W. directed the design and performance of the modeling and computational experiments, participated in data analysis and contributed to writing the manuscript. U.G. supervised the project together with C.J.L., designed experiments, analyzed data and wrote the final manuscript. C.J.L. supervised the project together with U.G., designed experiments, generated mutants, performed pharmacological experiments, analyzed data and wrote the manuscript draft together with T.B.Reprints and permissions information is available online at http://npg.nature.com/reprintsandpermissions/ NIH Public Access
Author ManuscriptNat Neurosci. Author manuscript; available in PMC 2009 July 1.
Published in final edited form as:Nat Neurosci. 2008 July ; 11(7): 780-789. doi:10.1038/nn.2146.
NIH-PA Author ManuscriptNIH-PA Author Manuscript
NIH-PA Author ManuscriptCocaine is an alkaloid derived from the Peruvian Erythroxylon coca plant and has been used as a stimulant for centuries 1 . Today, cocaine is widely abused, especially in the western hemisphere, causing major socioeconomic burdens through increased medical expenses, lost earnings and increased crime 2 . Nonetheless, the molecular mechanisms underlying cocaine's pharmacology and abuse ...