A cDNA encoding a cytochrome P450 enzyme was isolated from a cDNA library of the corpora allata (CA) from reproductively active Diploptera punctata cockroaches. This P450 from the endocrine glands that produce the insect juvenile hormone (JH) is most closely related to P450 proteins of family 4 and was named CYP4C7. The CYP4C7 gene is expressed selectively in the CA; its message could not be detected in the fat body, corpora cardiaca, or brain, but trace levels of expression were found in the midgut and caeca. The levels of CYP4C7 mRNA in the CA, measured by ribonuclease protection assays, were linked to the activity cycle of the glands. In adult females, CYP4C7 expression increased immediately after the peak of JH synthesis, reaching a maximum on day 7, just before oviposition. mRNA levels then declined after oviposition and during pregnancy. The CYP4C7 protein was produced in Escherichia coli as a C-terminal His-tagged recombinant protein. In a reconstituted system with insect NADPH cytochrome P450 reductase, cytochrome b 5 , and NADPH, the purified CYP4C7 metabolized (2E,6E)-farnesol to a more polar product that was identified by GC-MS and by NMR as (10E)-12-hydroxyfarnesol. CYP4C7 converted JH III to 12-trans-hydroxy JH III and metabolized other JH-like sesquiterpenoids as well. This -hydroxylation of sesquiterpenoids appears to be a metabolic pathway in the corpora allata that may play a role in the suppression of JH biosynthesis at the end of the gonotrophic cycle.Juvenile hormone (JH) plays a central role in insect development, metamorphosis, and reproduction. This sesquiterpenoid epoxide is synthesized in endocrine glands, the corpora allata (CA)(1), and is degraded predominantly by esterases and epoxide hydrolases (2). The rate of JH synthesis by the CA is a major determinant of the titer of JH in the hemolymph (3), and the regulation of JH synthesis is seen as a potential target for insect control. The biosynthesis of JH has been extensively characterized during the reproductive cycle of the cockroach Diploptera punctata, an insect that serves as a convenient model system. In adult females of this insect, the cycle of JH synthesis is regulated by humoral factors and by innervation from neurosecretory cells in the brain (1). Production of JH by the CA increases 10-fold to reach a peak 5 days after adult emergence and mating, and this peak corresponds to the peak of vitellogenesis. Synthesis is then rapidly repressed and remains low from deposition of the eggs into the brood sac through pregnancy (4).The allatostatins, a family of brain-gut peptides (5-9) are known to inhibit JH synthesis in D. punctata at the end of a gonotrophic cycle, but these peptides are probably not alone responsible for repression of the intrinsic rate of JH synthesis in postvitellogenic insects. The mechanism of stable suppression of JH synthesis at the end of the cycle has received very little attention, in part because of the absence of molecular tools to dissect it. This repression occurs concomitant with changes in c...