Rotavirus replication and virus assembly take place in electrodense spherical structures known as viroplasms whose main components are the viral proteins NSP2 and NSP5. The viroplasms are produced since early times after infection and seem to grow by stepwise addition of viral proteins and by fusion, however, the mechanism of viropIasms formation is unknown. In this study we found that the viroplasms surface colocalized with microtubules, and seem to be caged by a microtubule network. Moreover inhibition of microtubule assembly with nocodazole interfered with viroplasms growth in rotavirus infected cells. We searched for a physical link between viroplasms and microtubules by co-immunoprecipitation assays, and we found that the proteins NSP2 and NSP5 were co-immunoprecipitated with anti-tubulin in rotavirus infected cells and also when they were transiently co-expressed or individually expressed. These results indicate that a functional microtubule network is needed for viroplasm growth presumably due to the association of viroplasms with microtubules via NSP2 and NSP5.Key words: rotavirus -viroplasms -microtubules -NSP2 -NSP5Group A rotaviruses are the leading etiological agents of severe diarrheal disease in infants and young children worldwide (Parashar 2003). These viruses belong to the genus Rotavirus within the Reoviridae family and their genome consist of 11 double-stranded RNA segments that encode six structural proteins named VP1-VP4, VP6, and VP7, as well as six nonstructural proteins named NSP1 to NSP6 (Estes 2001).Rotavirus replication takes place in the cytoplasm of infected cells in electrodense spherical structures known as "viroplasms" that can be found as early as 4 h after infection . Viroplasms are composed of viral RNA and the proteins VP1, VP2, VP3, VP6, NSP2, and NSP5 (Petrie et al. 1982, Gallegos & Patton 1989, and while virion assembly occur in these structures (Petrie et al. 1982, Gallegos & Patton 1989) the mechanism of viroplasms formation is unknown. Recently, it was reported that the number of rotavirus viroplasms decrease with post-infection time (Eichwald et al. 2004), and while the diameter of single viroplasms increased with time, the total number of viroplasms per cell diminishes, suggesting that growth of these inclusion bodies occur by fusion and probably also by stepwise addition of viral components to the viroplasms surface (Eichwald et al. 2004).In the viroplasms the viral mRNAs are replicated to produce genomic double stranded RNAs (dsRNA) which are simultaneously encapsidated into double layerded viral particles (DLPs), that contain the 11 dsRNA at the core of the particle surrounded by the inner and intermediate protein layers of VP2 and VP6, respectively. The third layer formed by VP4 and VP7 is acquired by budding of the DLP particles into the endoplasmic reticulum (ER), a process that requires assistance of the viral non-structural protein 4 (NSP4), whereby a transient envelope is acquired, that is finally lost within the ER along with NSP4. The fundamental role of NSP...