2004
DOI: 10.1081/pde-200033760
|View full text |Cite
|
Sign up to set email alerts
|

Localization on the Boundary of Blow-up for Reaction–Diffusion Equations with Nonlinear Boundary Conditions

Abstract: In this work we analyze the existence of solutions that blow-up in finite time for a reaction-diffusion equation u t À Du ¼ fðx; uÞ in a smooth domain O with nonlinear boundary conditions @u=@n ¼ gðx; uÞ. We show that, if locally around some point of the boundary, we have fðx; uÞ ¼ Àbu p , b ! 0, and gðx; uÞ ¼ u q then, blow-up in finite time occurs if 2q > p þ 1 or if 2q ¼ p þ 1 and b < q. Moreover, if we denote by T b the blow-up time, we show that a proper continuation of the blowing up solutions are pinned… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
2
1

Citation Types

1
17
0
2

Year Published

2007
2007
2020
2020

Publication Types

Select...
7
1

Relationship

1
7

Authors

Journals

citations
Cited by 24 publications
(20 citation statements)
references
References 15 publications
1
17
0
2
Order By: Relevance
“…Hoy en día existen muchos trabajos que tratan sobre a la existencia de soluciones explosivas en problemas de difusión -reacción [2,3,5,6,8,9,10,12,13,15,16,18,19,20,25,27,28,29,30,35,36,41,42,43,44,48,49]. Algunos de estos trabajos discuten la posibilidad de extender las soluciones definidas localmente en [0, T ) a [0, +∞) y que exponen además resultados correspondientes los denominados exponentes de fujita los cuales permiten dar una respuesta apriori sobre la presencia de soluciones explosivas para determinadas ecuaciones de la forma (4) con m = 1ó F (∆u(x, t), x) = ∆u(x, t) en (5).…”
Section: X T) = Div(k(x)∇u(x T)) + F (X T U(x T) ∇U(x T))unclassified
See 1 more Smart Citation
“…Hoy en día existen muchos trabajos que tratan sobre a la existencia de soluciones explosivas en problemas de difusión -reacción [2,3,5,6,8,9,10,12,13,15,16,18,19,20,25,27,28,29,30,35,36,41,42,43,44,48,49]. Algunos de estos trabajos discuten la posibilidad de extender las soluciones definidas localmente en [0, T ) a [0, +∞) y que exponen además resultados correspondientes los denominados exponentes de fujita los cuales permiten dar una respuesta apriori sobre la presencia de soluciones explosivas para determinadas ecuaciones de la forma (4) con m = 1ó F (∆u(x, t), x) = ∆u(x, t) en (5).…”
Section: X T) = Div(k(x)∇u(x T)) + F (X T U(x T) ∇U(x T))unclassified
“…En [2,3,8,13] estudian problemas como (3) y (4). Se establecieron resultados complementarios sobre existencia global de soluciones y explosión de las mismas.…”
Section: X T) = Div(k(x)∇u(x T)) + F (X T U(x T) ∇U(x T))unclassified
“…We suspect that the φ n 's, modulo rotations, represent all solutions to the nonlinear boundary value problem with Neumann data λ sinh(u) on B 1 . In what follows we will consider solutions u(x, y, t) to…”
Section: A Two-space-dimensional Casementioning
confidence: 99%
“…Hence, nowadays the underlying mechanisms for dissipativeness or blow-up of solutions is fairly well understood; see e.g. [7,4,6,18,19]. Therefore, it is a natural question to analyse the dynamics and bifurcations induced by the nonlinear boundary conditions, and compare its effects with the case of an interior reaction term, which has been more widely studied.…”
Section: Introductionmentioning
confidence: 99%