The nucleolus is the largest subnuclear structure and is plurifunctional in nature. Here, we demonstrate that nucleolar localization of a key herpesvirus regulatory protein is essential for its role in virus mRNA nuclear export. The herpesvirus saimiri ORF57 protein is a nucleocytoplasmic shuttle protein that is conserved in all herpesviruses and orchestrates the nuclear export of viral intronless mRNAs. We demonstrate that expression of the ORF57 protein induces nucleolar redistribution of human TREX (transcription͞ export) proteins that are involved in mRNA nuclear export. Moreover, we describe a previously unidentified nucleolar localization signal within ORF57 that is composed of two distinct nuclear localization signals. Intriguingly, point mutations that ablate ORF57 nucleolar localization lead to a failure of ORF57-mediated viral mRNA nuclear export. Furthermore, nucleolar retargeting of the ORF57 mutant was achieved by the incorporation of the HIV-1 Rev nucleolar localization signal, and analysis demonstrated that this modification was sufficient to restore viral mRNA nuclear export. This finding represents a unique and fundamental role for the nucleolus in nuclear export of viral mRNA.mRNA export ͉ nucleolus ͉ virus T he eukaryotic cell nucleus is a highly organized environment containing distinct and often dynamic compartments (1). Of these, the nucleolus is the most prominent, and, for many years, its exclusive role was thought to be the site of ribosomal RNA transcription, processing, and assembly into the ribosome subunits (2). Recent studies, however, suggest that it has additional nonclassical roles in many aspects of cell biology, including cell cycle regulation, viral replication, tumorigenesis, and cellular stress responses (3-5). This plurifunctional nature of the nucleolus has been highlighted by extensive proteomic analysis of human nucleoli (6, 7). To date, the nucleolar proteome database archives 728 nucleolar proteins, and functional classification of these proteins reinforces the multiple roles of the nucleolus (8). Furthermore, there is constant dynamic trafficking of nucleolar proteins, and this concomitant dynamic nature of nucleolar structure may provide regulation of nonclassical nucleolar functions.Interestingly, an increasing number of key proteins from both RNA and DNA viruses have been shown to localize to the nucleolus. These proteins include those encoded by viruses such as coronaviruses, influenza, HIV-1, adenoviruses, and herpesviruses (9). Therefore, virus-nucleolar interactions are likely to have important implications in the life cycle of many viruses. However, at present, the precise functional role of these virus-nucleolar colocalizations has not been determined. One such key viral protein that traffics to the nucleolus is the herpesvirus saimiri (HVS) ORF57 protein. HVS is the prototype ␥-2 herpesvirus, or rhadinovirus (10), which has become an important family of viruses since the identification of the first human ␥-2 herpesvirus, the oncogenic Kaposi's sarcoma-associ...