About 250 million people in the world suffer from color vision deficiency (CVD). Contact lenses and glasses with a color filter are available to partially improve the vision of people with CVD. Tinted glasses uniformly change the colors in a user’s field of view (FoV), which can improve the contrast of certain colors while making others hard to identify. On the other hand, an optical see-through head-mounted display (OST-HMD) provides a new alternative by applying a controllable overlay to a user’s FoV. The method of color calibration for people with CVD, such as the Daltonization process, needs to make the calibrated color darker, which has not yet been featured on recent commercial OST-HMDs. We propose a new approach to realize light subtraction on OST-HMDs using a transmissive LCD panel, a prototype system, named ALCC-glasses, to validate and demonstrate the new arriving light chroma controllable augmented reality technology for CVD compensation.