The dependence of microwave impedance of a dc-biased Josephson Fluxonic Diode (JFD) under application of both dc magnetic field and rf excitation is calculated with a variety of conditions. For finite length of a JFD excited by a very low microwave excitation below its plasma frequency, applied dc magnetic field increases the rate of Vortex and Anti-Vortex (VAV) pair generation which fine-tunes the microwave resistance up to several factors more than its zero field microwave resistance (R 0 ). Under this circumstance, adding a dc bias for moving VAVs causes oscillation-like features in microwave impedance of JFD either in forward or reverse bias. As a result, the microwave resistance increases up to 30R 0 in the forward bias despite the fact that damping parameter (β) can limit this increase. On the other hand, sharp phase slips are seen in reverse bias mode on the reactance of overdamped JFD while increasing the frequency or amplitude of microwave excitation leads to unprecedented effects of resistance which is described.