2019
DOI: 10.20944/preprints201902.0046.v1
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

Localized Learning of Downscaled Soil Moisture

Abstract: If given the correct remotely sensed information, machine learning can accurately describe soil moisture conditions in a heterogeneous region at the large scale based on soil moisture readings at the small scale through rule transference across scale. This paper reviews an approach to increase soil moisture resolution over a sample region over Australia using the Soil Moisture Active Passive (SMAP) sensor and Landsat 8 only and a validation experiment using Sentinal-2 and the Advanced Microwave Scanning Radiom… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 63 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?