2016
DOI: 10.1016/j.apm.2015.09.048
|View full text |Cite
|
Sign up to set email alerts
|

Localized method of approximate particular solutions for solving unsteady Navier–Stokes problem

Abstract: Highlights• The LMAPS is proposed to solve Navier-Stokes equations.• The weighting coefficients are obtained by local MQ-RBFs.• A global and sparse matrix is reformulated.• Fractional step algorithm is adopted. AbstractThe localized method of approximate particular solutions (LMAPS) is proposed to solve two-dimensional transient incompressible Navier-Stokes systems of equations in primitive variables. The equations contain the Laplacian operator. In avoiding ill-conditioning problem, the weight coefficients of… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3

Citation Types

0
2
0
1

Year Published

2017
2017
2024
2024

Publication Types

Select...
8

Relationship

0
8

Authors

Journals

citations
Cited by 13 publications
(3 citation statements)
references
References 27 publications
0
2
0
1
Order By: Relevance
“…To the best of our current knowledge, the meshless schemes, including Kansa method [14], method of fundamental solutions [15], method of particular solutions [16,17], element-free Galerkin method [18], local point interpolation [19], and boundary knot method [20], are widely used to approximate a large class of partial differential equations in science and engineering fields. As reported in the literatures, the MPS has been applied to solve the Navier-Stokes problem [21], wave propagation problem [22], and time-fractional diffusion problem [23]. Despite the effectiveness of the MPS, there are some disadvantages such as the ill-conditioned collocation matrix, the uncertainty of the shape parameters, and difficulties in deriving the closed-form particular solutions for general differential operators, and for more details, please refer to [12,17,[24][25][26] and the references cited therein.…”
Section: Introductionmentioning
confidence: 99%
“…To the best of our current knowledge, the meshless schemes, including Kansa method [14], method of fundamental solutions [15], method of particular solutions [16,17], element-free Galerkin method [18], local point interpolation [19], and boundary knot method [20], are widely used to approximate a large class of partial differential equations in science and engineering fields. As reported in the literatures, the MPS has been applied to solve the Navier-Stokes problem [21], wave propagation problem [22], and time-fractional diffusion problem [23]. Despite the effectiveness of the MPS, there are some disadvantages such as the ill-conditioned collocation matrix, the uncertainty of the shape parameters, and difficulties in deriving the closed-form particular solutions for general differential operators, and for more details, please refer to [12,17,[24][25][26] and the references cited therein.…”
Section: Introductionmentioning
confidence: 99%
“…Sin embargo, en la implementación de las formulaciones locales, se pierde parte del carácter sin malla del esquema numérico, debido a la necesidad de definir la conectividad local parcial de los nodos de interpolación como se propone en los trabajos de Stevens y Power (Stevens, Power, Meng, Howard, y Cliffe, 2013). Las formulaciones locales han resultado ser mas eficientes en muchos problemas, por ejemplo en la predicción de campos de flujo viscoso a un número de Reynolds moderado y alto (Zhang, Chen, Chen, y Li, 2016), y otros casos no lineales como flujo a través de medios porosos en suelos (Jackson, Power, Giddings, y Stevens, 2017). La solución numérica por RBF de ecuaciones diferenciales parciales también puede mejorarse mediante métodos simétricos hermíticos, que interpolan las variables en los nodos y además aplica y cumple exactamente el operador diferencial en un conjunto de puntos.…”
Section: Introductionunclassified
“…In the LMAPS, the k-d tree algorithm [38] is applied for searching the neighboring points of each local center. Recently, the LMAPS has been successfully applied for the simulation of heat conduction, the molecular dynamics, the wave propagation, and the flow fields [39][40][41][42].…”
Section: Introductionmentioning
confidence: 99%