ABSTRACT:Łuczyński, P., Skompski, S. and Kozłowski, W. 2014. Stromatoporoid beds and flat-pebble conglomerates interpreted as tsunami deposits in the Upper Silurian of Podolia, Ukraine. Acta Geologica Polonica, 64 (3), 261-280. Warszawa.Tsunami deposits are currently a subject of intensive studies. Tsunamis must have occurred in the geological past in the same frequency as nowadays, yet their identified depositional record is surprisingly scarce. Here we describe a hitherto unrecognized example of probable palaeotsunamites.The Upper Silurian (Pridoli) carbonate succession of Podolia (southwestern Ukraine) contains variously developed event beds forming intercalations within peritidal deposits (shallow water limestones, nodular marls and dolomites). The event beds are represented by stromatoporoid and fine-grained bioclastic limestones, in some places accompanied by flat-pebble conglomerates. The interval with event beds can be traced along the Zbruch River in separate outcrops over a distance of more than 20 km along a transect oblique to the palaeoshoreline. The stromatoporoid beds have erosional bottom surfaces and are composed of overturned and often fragmented massive skeletons. The material has been transported landward from their offshore habitats and deposited in lagoonal settings. The flat-pebble conglomerates are composed of sub-angular micritic clasts that are lithologically identical to the sediments forming the underlying beds.Large-scale landward transport of the biogenic material has to be attributed to phenomena with very high energy levels, such as tropical hurricanes or tsunamis. This paper presents a tsunamigenic interpretation. Morphometric features of redeposited stromatoporoids point to a calm original growth environment at depths well below storm wave base. Tsunami waves are the most probable factor that could cause their redeposition from such a setting. The vastness of the area covered by parabiostromal stromatoporoid beds resembles the distribution of modern tsunami deposits in offshore settings. The stromatoporoid beds with unsorted stromatoporoids of various dimensions evenly distributed throughout the thickness of the beds and with clast-supported textures most probably represent deposition by traction. In some sections, the stromatoporoids are restricted to the lowermost parts of the beds, which pass upwards into bioclastic limestones. In this case, the finer material was deposited from suspension. The coexistence of stromatoporoid beds and flat-pebble conglomerates also allows presenting a tsunami interpretation of the latter. The propagating tsunami waves, led to erosion of partly lithified thin-layered mudstones, their fragmentation into flat clasts and redeposition as flat-pebble conglomerates.