Teleseismic records of the 2012 Mw 7.2 Sumatra earthquake contain prominent phases in the P wave train, arriving about 50 to 100 s after the direct P arrival. Azimuthal variations in these arrivals, together with back‐projection analysis, led Fan and Shearer (, https://doi.org/10.1002/2016GL067785) to conclude that they originated from early aftershock(s), located ∼150 km northeast of the mainshock and landward of the trench. However, recently, Yue et al. (, https://doi.org/10.1002/2017GL073254) argued that the anomalous arrivals are more likely water reverberations from the mainshock, based mostly on empirical Green's function analysis of a M6 earthquake near the mainshock and a water phase synthetic test. Here we present detailed back‐projection and waveform analyses of three M6 earthquakes within 100 km of the Mw 7.2 earthquake, including the empirical Green's function event analyzed in Yue et al. (, https://doi.org/10.1002/2017GL073254). In addition, we examine the waveforms of three M5.5 reverse‐faulting earthquakes close to the inferred early aftershock location in Fan and Shearer (, https://doi.org/10.1002/2016GL067785). These results suggest that the reverberatory character of the anomalous arrivals in the mainshock coda is consistent with water reverberations, but the origin of this energy is more likely an early aftershock rather than delayed and displaced water reverberations from the mainshock.