2011
DOI: 10.1109/tbme.2011.2162728
|View full text |Cite
|
Sign up to set email alerts
|

Localizing Heart Sounds in Respiratory Signals Using Singular Spectrum Analysis

Abstract: Respiratory sounds are always contaminated by heart sound interference. An essential preprocessing step in some of the heart sound cancellation methods is localizing primary heart sound components. Singular spectrum analysis (SSA), a powerful time series analysis technique, is used in this paper. Despite the frequency overlap of the heart and lung sound components, two different trends in the eigenvalue spectra are recognizable, which leads to find a subspace that contains more information about the underlying… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
1
1

Citation Types

0
70
0
4

Year Published

2011
2011
2024
2024

Publication Types

Select...
4
2
2
1

Relationship

1
8

Authors

Journals

citations
Cited by 116 publications
(74 citation statements)
references
References 27 publications
0
70
0
4
Order By: Relevance
“…sinusoidal or exponential), or other narrowband processes that are uncorrelated to white noise -except that the technique is much less effective at separating broadband processes from such noise as they are generally unstructured. Here, we adopt the widely used technique of singular spectrum analysis (SSA) that has found applications in a broad range of tasks in classic time-series analysis, multivariate statistics, dynamical systems, signal processing and, latterly, biomedical engineering [16]- [18].…”
Section: Signal/data Analysismentioning
confidence: 99%
“…sinusoidal or exponential), or other narrowband processes that are uncorrelated to white noise -except that the technique is much less effective at separating broadband processes from such noise as they are generally unstructured. Here, we adopt the widely used technique of singular spectrum analysis (SSA) that has found applications in a broad range of tasks in classic time-series analysis, multivariate statistics, dynamical systems, signal processing and, latterly, biomedical engineering [16]- [18].…”
Section: Signal/data Analysismentioning
confidence: 99%
“…This is probably the main shortcoming of basic SSA. In some very recent applications such as [4], [5], [6], [7] or [8] selection of periodic components has been decided by clustering the eigentriples [5] or establishing some criteria [6], [7], [8]. Such criteria can be set only if the periodic signal is narrow band or well defined.…”
Section: Ssa-based Alementioning
confidence: 99%
“…A pesar de la superposición frecuencial de los componentes del corazón con los sonidos del pulmón, se pueden diferenciar dos tendencias en los espectros con valores propios, estos conducen a un sub-espacio que contiene más información sobre el sonido subyacente del corazón. En un experimento se mezclaron artificialmente señales respiratorias reales para evaluar la eficiencia del método [9] . Seleccionando la longitud adecuada para una ventana SSA que resulta en una descomposición de buena calidad y bajo costo computacional del algoritmo.…”
Section: Introductionunclassified
“…Seleccionando la longitud adecuada para una ventana SSA que resulta en una descomposición de buena calidad y bajo costo computacional del algoritmo. En lo general los algoritmos de detección de sonido del corazón existentes tienen menor desempeño en las señales anormales [9] . En [10] , se propone un algoritmo basado en un método de doble umbral para una detección robusta de los sonidos cardiacos S1 y S2.…”
Section: Introductionunclassified