Unlike correlation of classical systems, entanglement of quantum systems cannot be distributed at will: if one system A is maximally entangled with another system B, it cannot be entangled at all with a third system C. This concept, known as the monogamy of entanglement, is manifest when the entanglement of A with a pair BC can be divided as contributions of the entanglement between A and B and A and C, plus a term τ ABC involving genuine tripartite entanglement and so expected to be always positive. A very important measure in quantum information theory, the entanglement of formation (EOF), fails to satisfy this last requirement. Here we present the reasons for that and show a set of conditions that an arbitrary pure tripartite state must satisfy for the EOF to become a monogamous measure, i.e., for τ ABC 0. The relation derived is connected to the discrepancy between quantum and classical correlations, τ ABC being negative whenever the quantum correlation prevails over the classical one. This result is employed to elucidate features of the distribution of entanglement during a dynamical evolution. It also helps to relate all monogamous instances of the EOF to the squashed sntanglement, an entanglement measure that is always monogamous.