This paper develops a distribution circuit multi-time-scale simulation tool for applications in wind turbine and photovoltaic (PV) integration analysis. The proposed simulation tool developed in MATLAB TM includes several distribution circuit components, such as voltage sources, distribution lines, transformers, loads, capacitor banks, wind turbines and PVs. Each equipment consists of three models for simulations in three different time scales, i.e., steady-state, electromechanical transient and electromagnetic transient models. Therefore, the proposed tool is able to perform a long-term simulation involving power system phenomena spreading across time scales. The test circuits employed to perform multi-time-scale simulation in this paper are modified from the IEEE four-node test feeder. The simulation scenarios include wind speed and solar irradiance ramp up and down; a capacitor bank is energized and de-energized; and a single-line-to-ground fault occurs and clears itself. The simulation results show that the proposed tool is capable of evaluating power system phenomena spread across time scales.