2021
DOI: 10.48550/arxiv.2108.05430
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

Loci of Poncelet Triangles in the General Closure Case

Abstract: We analyze loci of triangles centers over variants of two-well known triangle porisms: the bicentric family and the confocal family. Specifically, we evoke a more general version of Poncelet's closure theorem whereby individual sides can be made tangent to separate caustics. We show that despite a more complicated dynamic geometry, the locus of certain triangle centers and associated points remain conics and/or circles.

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 10 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?