Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Snake robots require autonomous localization and mapping capabilities for field applications. However, the characteristics of their motion, such as large turning angles and fast rotation speeds, can lead to issues like drift or even failure in positioning and map building. In response to this situation, this paper starts from the gait motion characteristics of the snake robot itself, proposing an improved gait motion method and a tightly coupled method based on IMU and visual information to solve the problem of poor algorithm convergence caused by head-shaking in snake robot SLAM. Firstly, the adaptability of several typical gaits of the snake robot to SLAM methods was evaluated. Secondly, the serpentine gait was selected as the object of gait improvement, and a head stability control method for the snake robot was proposed, thereby reducing the interference of the snake robot’s motion on the sensors. Thirdly, a visual–inertial tightly coupled SLAM method for the snake robot’s serpentine gait and Arc-Rolling gait was proposed, and the method was verified to enhance the robustness of the visual SLAM algorithm and improve the positioning and mapping accuracy of the snake robot. Finally, experiments proved that the methods proposed in this paper can effectively improve the accuracy of positioning and map building for snake robots.
Snake robots require autonomous localization and mapping capabilities for field applications. However, the characteristics of their motion, such as large turning angles and fast rotation speeds, can lead to issues like drift or even failure in positioning and map building. In response to this situation, this paper starts from the gait motion characteristics of the snake robot itself, proposing an improved gait motion method and a tightly coupled method based on IMU and visual information to solve the problem of poor algorithm convergence caused by head-shaking in snake robot SLAM. Firstly, the adaptability of several typical gaits of the snake robot to SLAM methods was evaluated. Secondly, the serpentine gait was selected as the object of gait improvement, and a head stability control method for the snake robot was proposed, thereby reducing the interference of the snake robot’s motion on the sensors. Thirdly, a visual–inertial tightly coupled SLAM method for the snake robot’s serpentine gait and Arc-Rolling gait was proposed, and the method was verified to enhance the robustness of the visual SLAM algorithm and improve the positioning and mapping accuracy of the snake robot. Finally, experiments proved that the methods proposed in this paper can effectively improve the accuracy of positioning and map building for snake robots.
With the ever-increasing demand for harvesting wind energy, the inspection of its associated infrastructures, particularly turbines, has become essential to ensure continued and sustainable operations. With these inspections being hazardous to human operators, time-consuming and expensive, the door was opened for drone solutions to offer a more effective alternative. However, drones also come with their own issues, such as communication, maintenance and the personnel needed to operate them. A multimodal approach to this problem thus has the potential to provide a combined solution where a single platform can perform all inspection operations required for wind turbine structures. This paper reviews the current approaches and technologies used in wind turbine inspections together with a multitude of multimodal designs that are surveyed to assess their potential for this application. Rotor-based designs demonstrate simpler and more efficient means to conduct such missions, whereas bio-inspired designs allow greater flexibility and more accurate locomotion. Whilst each of these design categories comes with different trade-offs, both should be considered for an effective hybrid design to create a more optimal system. Finally, the use of sensor fusion within techniques such as GPS and LiDAR SLAM enables high navigation performances while simultaneously utilising these sensors to conduct the inspection tasks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.