Peptides structurally related to mammalian tachykinins have recently been isolated from the brain and intestine of several insect species, where they are believed to function as both neuromodulators and hormones. Further evidence for the signaling role of insect tachykinin-related peptides was provided by the cloning and characterization of cDNAs for two tachykinin receptors from Drosophila melanogaster. However, no endogenous ligand has been isolated for the Drosophila tachykinin receptors to date. Analysis of the Drosophila genome allowed us to identify a putative tachykininrelated peptide prohormone (prepro-DTK) gene. A 1.5-kilobase pair cDNA amplified from a Drosophila head cDNA library contained an 870-base pair open reading frame, which encodes five novel Drosophila tachykininrelated peptides (called DTK peptides) with conserved C-terminal FXGXR-amide motifs common to other insect tachykinin-related peptides. The tachykinin-related peptide prohormone gene (Dtk) is both expressed and post-translationally processed in larval and adult midgut endocrine cells and in the central nervous system, with midgut expression starting at stage 17 of embryogenesis. The predicted Drosophila tachykinin peptides have potent stimulatory effects on the contractions of insect gut. These data provide additional evidence for the conservation of both the structure and function of the tachykinin peptides in the brain and gut during the course of evolution.Substance P was the first peptide signaling molecule to be identified by virtue of its effects upon blood pressure and smooth muscle contraction (1) and is the archetypal member of the tachykinin family of peptides. Vertebrate tachykinins represent a large family of peptides that elicit a wide range of both central and peripheral responses (2-5). Although these peptides are structurally diverse, all contain a conserved C-terminal FXGLM-amide motif. Like other biologically active peptides, substance P is derived from a larger prohormone polypeptide (preprotachykinin A (PPT-A) 1 ) that also allows the production of several other biologically active peptides (neurokinin A, neuropeptide K, and neuropeptide ␥) (6). Three different isoforms of preprotachykinin can be produced as a result of alternative splicing of the PPT-A mRNA, which, in conjunction with alternative post-translational processing of the prohormone, allows the production of these peptides in a tissue-specific manner (7-9). A fifth mammalian tachykinin, neurokinin B, is derived from a separate gene product, preprotachykinin B (10).The tachykinin family is not confined to vertebrates, and a large number of tachykinins have now been isolated from a variety of invertebrate species such as the cockroach Leucophaea maderae (11, 12), the mosquito Culex salinarius (13), and the echiuroid worm Urechis unicinctus (14). In contrast to the vertebrate tachykinins, almost all of the invertebrate tachykinins contain a conserved C-terminal FXGXR-amide motif and, for this reason, have been termed tachykinin-related peptides (TRPs). Not...