The most recent generations of graphics processing units (GPUs) boost the execution of convolutional operations required by machine learning applications by resorting to specialized and efficient in-chip accelerators (Tensor Core Units or TCUs) that operate on matrix multiplication tiles. Unfortunately, modern cutting-edge semiconductor technologies are increasingly prone to hardware defects, and the trend to highly stress TCUs during the execution of safety-critical and high-performance computing (HPC) applications increases the likelihood of TCUs producing different kinds of failures. In fact, the intrinsic resiliency to hardware faults of arithmetic units plays a crucial role in safety-critical applications using GPUs (e.g., in automotive, space, and autonomous robotics). Recently, new arithmetic formats have been proposed, particularly those suited to neural network execution. However, the reliability characterization of TCUs supporting different arithmetic formats was still lacking. In this work, we quantitatively assessed the impact of hardware faults in TCU structures while employing two distinct formats (floating-point and posit) and using two different configurations (16 and 32 bits) to represent real numbers. For the experimental evaluation, we resorted to an architectural description of a TCU core (PyOpenTCU) and performed 120 fault simulation campaigns, injecting around 200,000 faults per campaign and requiring around 32 days of computation. Our results demonstrate that the posit format of TCUs is less affected by faults than the floating-point one (by up to three orders of magnitude for 16 bits and up to twenty orders for 32 bits). We also identified the most sensible fault locations (i.e., those that produce the largest errors), thus paving the way to adopting smart hardening solutions.