a b s t r a c tIn system modeling, knowledge management comes vividly into the picture when dealing with a collection of individual models. These models being considered as sources of knowledge, are engaged in some collective pursuits of a collaborative development to establish modeling outcomes of global character. The result comes in the form of a so-called granular fuzzy model, which directly reflects upon and quantifies the diversity of the available sources of knowledge (local models) involved in knowledge management. In this study, several detailed algorithmic schemes are presented along with related computational aspects associated with Granular Computing. It is also shown how the construction of information granules completed through the use of the principle of justifiable granularity becomes advantageous in the realization of granular fuzzy models and a quantification of the quality (specificity) of the results of modeling. We focus on the design of granular fuzzy models considering that the locally available models are those fuzzy rule-based. It is shown that the model quantified in terms of two conflicting criteria, that is (a) a coverage criterion expressing to which extent the resulting information granules ''cover'' include data and (b) specificity criterion articulating how detailed (specific) the obtained information granules are. The overall quality of the granular model is also assessed by determining an area under curve (AUC) where the curve is formed in the coverage-specificity coordinates. Numeric results are discussed with intent of displaying the most essential features of the proposed methodology and algorithmic developments.