In this paper, we investigate the switching process in triangular symmetric and planar symmetric threecore nonlinear fiber coupler (TNLDC) and we have numerically shown, via the coupled nonlinear Schrödinger equations (NLSEs), that logic gates AND, OR and NXOR can be constructed from a triangular TNLDC while the planar TNLDC produced logical gates AND, NAND, OR, and XOR. We consider two basic models. The first, one triangular symmetrical structure with three cores in an equilateral-triangle arrangement and using a control signal (CS) applied to the first core and the second model present a transverse symmetrical structure with three cores in a parallel equidistant arrangement (or planar symmetrical structure), however the position of the control signal (CS) is applied to the input of the first fiber (core 1). Looking at the transmission characteristics of the device, through the direct and cross channel, we did a study of the extinction ratio (Xratio) of these devices. In comparing the performance of both switches operating as logic gates we will use the figure-of-merit of the logic gates [FOMELG(dB)] defined as a function of the extinction ratio of the gate outputs.