Fault simulation of digital circuits must correctly compute fault coverage to assess test and product quality. In case of unknown values (X-values), fault simulation is pessimistic and underestimates actual fault coverage, resulting in increased test time and data volume, as well as higher overhead for design-for-test. This work proposes a novel algorithm to determine fault coverage with significantly increased accuracy, offering increased fault coverage at no cost, or the reduction of test costs for the targeted coverage. The algorithm is compared to related work and evaluated on benchmark and industrial circuits.
Preprint
General Copyright NoticeThis article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden. This is the author's "personal copy" of the final, accepted version of the paper published by IEEE. Abstract-Fault simulation of digital circuits must correctly compute fault coverage to assess test and product quality. In case of unknown values (X-values), fault simulation is pessimistic and underestimates actual fault coverage, resulting in increased test time and data volume, as well as higher overhead for designfor-test. This work proposes a novel algorithm to determine fault coverage with significantly increased accuracy, offering increased fault coverage at no cost, or the reduction of test costs for the targeted coverage. The algorithm is compared to related work and evaluated on benchmark and industrial circuits.