2016
DOI: 10.1063/1.4947407
|View full text |Cite
|
Sign up to set email alerts
|

Logistic regression and artificial neural network models for mapping of regional-scale landslide susceptibility in volcanic mountains of West Java (Indonesia)

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1

Citation Types

0
5
0
2

Year Published

2018
2018
2024
2024

Publication Types

Select...
8

Relationship

0
8

Authors

Journals

citations
Cited by 11 publications
(7 citation statements)
references
References 29 publications
0
5
0
2
Order By: Relevance
“…La explicación a esta diferencia puede deberse, entre otros posibles factores, a las diferencias existentes en la importancia relativa de las variables explicativas entre los dos modelos, como se muestra en los Cuadros 2 y 5. Estas diferencias también se manifiestan en Ngadisih et al, (2016) y Lee et al, (2016).…”
Section: Análisis De Incertidumbreunclassified
See 1 more Smart Citation
“…La explicación a esta diferencia puede deberse, entre otros posibles factores, a las diferencias existentes en la importancia relativa de las variables explicativas entre los dos modelos, como se muestra en los Cuadros 2 y 5. Estas diferencias también se manifiestan en Ngadisih et al, (2016) y Lee et al, (2016).…”
Section: Análisis De Incertidumbreunclassified
“…Para ello, se han empleado comparativamente dos modelos de predicción, regresión logística y redes neuronales artificiales. Este último presentó una mayor capacidad predictiva en términos de la función ROC, resultado que comparten la mayoría de estudios (Nefeslioglu et al, 2008;Ngadisih, et al, 2016;Pradhan y Lee, 2010). Esta evidencia empírica, unida al hecho de que el segundo modelo es un método no-paramétrico y que, por tanto, permite flexibilizar determinados supuestos de partida con respecto a las variables explicativas, fortalece su prevalencia sobre el modelo de regresión logística.…”
Section: Conclusionesunclassified
“…Any study related to landslides depends on the accuracy of the landslide inventory data collected and mapped [13,14]. This data can be prepared by satellite image processing, historical documentation and reports, and field surveys of landslide locations [15]. The occurrence of landslides in a region is influenced by various topographical, geological, hydrological, and anthropological factors.…”
Section: Introductionmentioning
confidence: 99%
“…The results also illustrate that the hybrid model generally improves the prediction ability of a single landslide susceptibility model.Water 2020, 12, 113 2 of 29 weights of evidence [10][11][12], frequency ratio [13][14][15][16][17], logistic regression [18][19][20][21], linear multivariate regression, multivariate adaptive regression spline [22][23][24], and statistical index [25,26] have been widely used. However, these traditional statistical methods do not provide satisfactory evaluation of the correlation between landslide influencing factors [4,27].Therefore, machine learning technologies have drawn extensive attention, and many kinds of machine learning methods have been developed and used, such as classification and regression trees [28,29], adaptive neuro-fuzzy inference systems [30,31], fuzzy logic [32,33], alternating decision trees [34][35][36], support vector machine [37][38][39], artificial neural networks [40,41], and random forest [4,[42][43][44][45]. In particular, hybrid models are increasingly used, such as the rotation forest-based decision trees [46,47], frequency ratio-based ANFIS model [48]…”
mentioning
confidence: 99%
“…Therefore, machine learning technologies have drawn extensive attention, and many kinds of machine learning methods have been developed and used, such as classification and regression trees [28,29], adaptive neuro-fuzzy inference systems [30,31], fuzzy logic [32,33], alternating decision trees [34][35][36], support vector machine [37][38][39], artificial neural networks [40,41], and random forest [4,[42][43][44][45]. In particular, hybrid models are increasingly used, such as the rotation forest-based decision trees [46,47], frequency ratio-based ANFIS model [48], bagging-based reduced error pruning trees [49], and multiboost-based support vector machines [50].…”
mentioning
confidence: 99%