We introduce the notions of preordered and heap-preordered forests, generalizing the construction of ordered and heap-ordered forests. We prove that the algebras of preordered and heap-preordered forests are Hopf for the cut coproduct, and we construct a Hopf morphism to the Hopf algebra of packed words. Moreover, we define another coproduct on the preordered forests given by the contraction of edges. Finally, we give a combinatorial description of morphims defined on Hopf algebras of forests with values in the Hopf algebras of shuffes or quasi-shuffles.Résumé. Nous introduisons les notions de forêts préordonnées et préordonnées en tas, généralisant les constructions des forêts ordonnées et ordonnées en tas. On démontre que les algèbres des forêts préordonnées et préordonnées en tas sont des algèbres de Hopf pour le coproduit de coupes et on construit un morphisme d'algèbres de Hopf dans l'algèbre des mots tassés. D'autre part, nous définissons un autre coproduit sur les forêts préordonnées donné par la contraction d'arêtes. Enfin, nous donnons une description combinatoire de morphismes définis sur des algèbres de Hopf de forêts et à valeurs dans les algèbres de Hopf de battages et de battages contractants.