Background: Necrotizing fasciitis (NF) is a serious infectious disease that can initially place the patient’s life in danger and, after successful surgical and antibiotic treatment, leaves extensive wounds with sometimes even exposed bones and tendons. Autologous skin grafts are not always possible or require adequate wound bed preparation. Novel intact fish skin grafts (iFSGs; Kerecis® Omega3 Wound, Kerecis hf, Isafjördur, Iceland) have already shown their potential to promote granulation in many other wound situations. Faster wound healing rates and better functional and cosmetic outcomes were observed due to their additionally postulated anti-inflammatory and analgesic properties. Therefore, iFSGs may also be essential in treating NF. We present our initial experience with iFSGs in treating leg wounds after NF and review the literature for the current spectrum of clinical use of iFSGs. Case Presentations: We present two male patients (aged 60 and 69 years) with chronic or acute postsurgical extensive leg ulcers six weeks and six days after necrotizing fasciitis, respectively. Both suffered from diabetes mellitus without vascular pathologies of the lower limbs. A single application of one pre-meshed (Kerecis® Graftguide) and one self-meshed 300 cm2 iFSG (Kerecis® Surgiclose) was performed in our operation room after extensive surgical debridement and single circles of negative wound pressure therapy. Application and handling were easy. An excellent wound granulation was observed, even in uncovered tibia bone and tendons, accompanied by pain relief in both patients. Neither complications nor allergic reactions occurred. The patients received autologous skin grafting with excellent functional and cosmetic outcomes. Conclusions: iFSGs have the potential to play a significant role in the future treatment of NF due to the fast promotion of wound granulation and pain relief. Our experience may encourage surgeons to use iFSGs in NF patients, although high-quality, large-sized studies are still required to confirm these results. The observed effects of iFSGs on wounds associated with NF may be transferred to other wound etiologies as well.