2020
DOI: 10.1109/access.2020.3044173
|View full text |Cite
|
Sign up to set email alerts
|

Long and Short-Term Bus Arrival Time Prediction With Traffic Density Matrix

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
2
1

Citation Types

0
5
0

Year Published

2021
2021
2024
2024

Publication Types

Select...
4
3

Relationship

0
7

Authors

Journals

citations
Cited by 9 publications
(5 citation statements)
references
References 57 publications
0
5
0
Order By: Relevance
“…The first important and crucial step of designing a BAT prediction system is selection of the suitable model. These models based on their characteristics and application in field of BAT prediction are mainly divided into four categories: probabilistic models (Abkowitz et al, 1987; Anderson & Goodman, 1957; Dhivyabharathi et al, 2016; Guenthner & Hamat, 1988; Hans et al, 2015a, 2015b; Krbálek & Seba, 2000; Lee et al, 1968; Lin & Bertini, 2004; Tian et al, 2018), historical models (Biagioni et al, 2011; Maiti et al, 2014; Wepulanon et al, 2017), statistical models (Chen et al, 2007; Huang et al, 2021; Patnaik et al, 2004; Sinn et al, 2012; Xiang et al, 2020), shallow machine learning models (Bin et al, 2006; Chen, 2018; Chen et al, 2007; Chien et al, 2002; Fauzan et al, 2019; Hua et al, 2017; Huang et al, 2021; Jalaney & Ganesh, 2020; Ji et al, 2016; Kalaputapu & Demetsky, 1995; Kee et al, 2017; Khamparia & Choudhary, 2019; Lai et al, 2020; Lam et al, 2019; Li, 2017; Lin et al, 2013; Peng et al, 2018; Treethidtaphat et al, 2017; Wang et al, 2014; Yang et al, 2016; Yin et al, 2017; Yu et al, 2010, 2011; Zhang et al, 2017), and deep machine learning models (Agafonov & Yumaganov, 2019; Alam et al, 2020; Han et al, 2020; Huang et al, 2019; Kalaputapu & Demetsky, 1995; Lingqiu et al, 2019; Liu, Sun, & Wang, 2020; Liu, Xu, et al, 2020; Pang et al, 2019; Panovski & Zaharia, 2020; Pa...…”
Section: Discussionmentioning
confidence: 99%
See 2 more Smart Citations
“…The first important and crucial step of designing a BAT prediction system is selection of the suitable model. These models based on their characteristics and application in field of BAT prediction are mainly divided into four categories: probabilistic models (Abkowitz et al, 1987; Anderson & Goodman, 1957; Dhivyabharathi et al, 2016; Guenthner & Hamat, 1988; Hans et al, 2015a, 2015b; Krbálek & Seba, 2000; Lee et al, 1968; Lin & Bertini, 2004; Tian et al, 2018), historical models (Biagioni et al, 2011; Maiti et al, 2014; Wepulanon et al, 2017), statistical models (Chen et al, 2007; Huang et al, 2021; Patnaik et al, 2004; Sinn et al, 2012; Xiang et al, 2020), shallow machine learning models (Bin et al, 2006; Chen, 2018; Chen et al, 2007; Chien et al, 2002; Fauzan et al, 2019; Hua et al, 2017; Huang et al, 2021; Jalaney & Ganesh, 2020; Ji et al, 2016; Kalaputapu & Demetsky, 1995; Kee et al, 2017; Khamparia & Choudhary, 2019; Lai et al, 2020; Lam et al, 2019; Li, 2017; Lin et al, 2013; Peng et al, 2018; Treethidtaphat et al, 2017; Wang et al, 2014; Yang et al, 2016; Yin et al, 2017; Yu et al, 2010, 2011; Zhang et al, 2017), and deep machine learning models (Agafonov & Yumaganov, 2019; Alam et al, 2020; Han et al, 2020; Huang et al, 2019; Kalaputapu & Demetsky, 1995; Lingqiu et al, 2019; Liu, Sun, & Wang, 2020; Liu, Xu, et al, 2020; Pang et al, 2019; Panovski & Zaharia, 2020; Pa...…”
Section: Discussionmentioning
confidence: 99%
“…Mean absolute error (Agafonov & Yumaganov, 2019; Hua et al, 2017; Jalaney & Ganesh, 2020; Lam et al, 2019; Liu, Sun, & Wang, 2020; Pang et al, 2019; Panovski & Zaharia, 2020; Peng et al, 2018; Petersen et al, 2019; Seitbekova et al, 2020; Serin et al, 2020; Treethidtaphat et al, 2017; Wepulanon et al, 2017; Xie et al, 2021; Xu & Ying, 2017; Yu et al, 2011; Zhang et al, 2017; Zhou et al, 2019).…”
Section: Discussionmentioning
confidence: 99%
See 1 more Smart Citation
“…Spatial flow patterns were also discussed recently. As presented in [12,33], the authors found the consideration of the spatial factors in conjunction with the temporal patterns to be effective. Lee and Yoon introduced TFC-LSTM [8] for predicting traffic speed by embedding the flow of a traffic network in low dimensions and reported an MAE of 2.50 km/h, an RMSE of 4.28 km/h, and a MAPE of 10.39%.…”
Section: Related Workmentioning
confidence: 95%
“…The main difference lies in that the processing of information in neural network becomes more precise. The long and short-term memory network has three gates to protect and control the cellular state, including the forgetting gate, input gate, and output gate [ 25 , 26 ]. Long and short-term memory network has similar control flow to the basic recursive neural network, but the control logic inside the basic unit of long and short-term memory network is slightly more complex.…”
Section: Estimation Algorithm Of Artificial Intelligence Modelmentioning
confidence: 99%