“…The first important and crucial step of designing a BAT prediction system is selection of the suitable model. These models based on their characteristics and application in field of BAT prediction are mainly divided into four categories: probabilistic models (Abkowitz et al, 1987; Anderson & Goodman, 1957; Dhivyabharathi et al, 2016; Guenthner & Hamat, 1988; Hans et al, 2015a, 2015b; Krbálek & Seba, 2000; Lee et al, 1968; Lin & Bertini, 2004; Tian et al, 2018), historical models (Biagioni et al, 2011; Maiti et al, 2014; Wepulanon et al, 2017), statistical models (Chen et al, 2007; Huang et al, 2021; Patnaik et al, 2004; Sinn et al, 2012; Xiang et al, 2020), shallow machine learning models (Bin et al, 2006; Chen, 2018; Chen et al, 2007; Chien et al, 2002; Fauzan et al, 2019; Hua et al, 2017; Huang et al, 2021; Jalaney & Ganesh, 2020; Ji et al, 2016; Kalaputapu & Demetsky, 1995; Kee et al, 2017; Khamparia & Choudhary, 2019; Lai et al, 2020; Lam et al, 2019; Li, 2017; Lin et al, 2013; Peng et al, 2018; Treethidtaphat et al, 2017; Wang et al, 2014; Yang et al, 2016; Yin et al, 2017; Yu et al, 2010, 2011; Zhang et al, 2017), and deep machine learning models (Agafonov & Yumaganov, 2019; Alam et al, 2020; Han et al, 2020; Huang et al, 2019; Kalaputapu & Demetsky, 1995; Lingqiu et al, 2019; Liu, Sun, & Wang, 2020; Liu, Xu, et al, 2020; Pang et al, 2019; Panovski & Zaharia, 2020; Pa...…”