Background
There is a growing interest in the significance of adopting a variety of lifestyle habits for maintaining cognitive function among older adults. A lifestyle that is easy to modify, simple, and less burdensome for older people is ideal. We investigated the longitudinal association between global cognitive decline and cognitive leisure activities (CLAs) combined with long-chain polyunsaturated fatty acids (LCPUFAs) intake.
Methods
The National Institute for Longevity Sciences-Longitudinal Study of Aging (NILS-LSA) enrolled community-dwelling middle-aged and older men and women who were randomly selected from Obu-City and Higashiura Town, Aichi, Japan. Baseline data (2006–2008), including CLAs and dietary intake, were obtained from 517 participants (aged 60–84 years) with normal cognition. Global cognitive decline, defined as the Mini-Mental State Examination (MMSE) score ≤ 27, was assessed at baseline and four years later. Interaction between CLAs and LCPUFAs on cognitive decline was investigated using a multiple logistic analysis with adjustment for confounders. CLA engagement and LCPUFA intake were divided into high and low groups according to the frequency at which each participant engaged in the activity and the median intake level according to sex, respectively.
Results
A significant interaction was detected for the combination of CLA engagement and LCPUFA intake. Logistic regression coefficients revealed significant interactions when participants engaged in more than five CLA varieties. One of the CLAs, art appreciation, produced a significant main effect against cognitive decline and a significant interaction in combination with LCPUFA intake. The major LCPUFAs—docosahexaenoic acid and arachidonic acid—also exhibited a significant interaction. The combination of high LCPUFA intake and high art appreciation frequency yielded a lower adjusted odds ratio for cognitive decline than the combination of low LCPUFA and low art appreciation [0.25 (95 % confidence intervals, 0.11–0.56)].
Conclusions
Preserving cognitive function might be associated with a combination of varied and high-frequency engagement in CLAs combined with high LCPUFA intake.