This work presents a reinforcement learning approach for intelligent decision-making of a Cutter Suction Dredger (CSD), which is a special type of vessel for deepening harbors, constructing ports or navigational channels, and reclaiming landfills. Currently, CSDs are usually controlled by human operators, and the production rate is mainly determined by the so-called cutting process (i.e., cutting the underwater soil into fragments). Long-term manual operation is likely to cause driving fatigue, resulting in operational accidents and inefficiencies. To reduce the labor intensity of the operator, we seek an intelligent controller the can manipulate the cutting process to replace human operators. To this end, our proposed reinforcement learning approach consists of two parts. In the first part, we employ a neural network model to construct a virtual environment based on the historical dredging data. In the second part, we develop a reinforcement learning model that can lean the optimal control policy by interacting with the virtual environment to obtain human experience. The results show that the proposed learning approach can successfully imitate the dredging behavior of an experienced human operator. Moreover, the learning approach can outperform the operator in a way that can make quick responses to the change in uncertain environments.