Chronic obstructive pulmonary disease (COPD) is a common respiratory disease. This study explored the mechanism of miR-181a-5p in the inflammatory response in COPD mice. COPD mouse models were established by cigarette smoke (CS) exposure following pretreatment with recombinant adeno-associated virus (rAAv)-miR-181a-5p, si-HMGB1 (high mobility group box 1), and NF-κB pathway inhibitor PDTC, respectively. Pathological changes of lung tissues were determined by HE staining. BALF was collected to count total cells, neutrophils and lymphocytes using a Countess II automatic cell counter. Expressions of NE and inflammatory factors (TNF-α, IL-6, IL-8 and IFN-γ) were detected by ELISA. Binding relationship between miR-181a-5p and HMGB1 was predicted on Starbase (http://starbase.sysu.edu.cn/index.php) and validated by dual-luciferase assay. miR-181a-5p expression was detected by RT-qPCR, and expressions of HMGB1, IκBα, p-IκBα were detected by Western blot. The expression level of miR-181a-5p was lower in lung tissues. miR-181a-5p overexpression alleviated inflammatory response and pathological changes of lung tissues in COPD mice, with decreased pulmonary inflammation scores, total cells, neutrophils, and lymphocytes and expressions of NE and inflammatory factors. HMGB1 expression level was increased in COPD mice. miR-181a-5p targeted HMGB1. si-HMGB1 relieved inflammatory responses in COPD mice. NF-κB was activated in COPD mice, evidenced by degraded IκBα and increased p-IκBα level. si-HMGB1 significantly restrained the activation of NF-κB pathway. Briefly, miR-181a-5p targets HMGB1 to inhibit the NF-κB pathway, thus alleviating the inflammatory response in COPD mice.