Long non-coding RNAs in biomarking COVID-19: a machine learning-based approach
Raheleh Heydari,
Mohammad Javad Tavassolifar,
Sara Fayazzadeh
et al.
Abstract:Background
The coronavirus pandemic that started in 2019 has caused the highest mortality and morbidity rates worldwide. Data on the role of long non-coding RNAs (lncRNAs) in coronavirus disease 2019 (COVID-19) is scarce. We aimed to elucidate the relationship of three important lncRNAs in the inflammatory states, H19, taurine upregulated gene 1 (TUG1), and colorectal neoplasia differentially expressed (CRNDE) with key factors in inflammation and fibrosis induction including signal transducer a… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.