Diabetic kidney disease (DKD) is escalating and is the major cause of end stage kidney failure. There is increasing evidence to support the role of epigenetic factors and metabolic memory in linking the environmental and genetic causes of this disease. Although our understanding of this disease has improved, there has been no significant efficacious therapeutic translation in the last decade. Current sequencing technology has allowed interrogation of the human transcriptome. It is evident that although approximately 80 % of the genome is transcribed, only 1-2 % is read and coded into protein. The remaining non-coding RNA, historically assumed to be 'junk', is now known to have key roles in regulating gene function and orchestrate how and when coding genes are expressed. This largest subset of non-coding RNAs called long non-coding RNAs (LNCRNAs) drives epigenetic changes and has functional relevance best characterized in cancers and cardiovascular disease. This understanding, coupled with the availability and affordability of RNA sequencing, has shifted our therapeutic strategies towards genomic therapy in DKD. The role of LNCRNAs with respect to DKD is only just emerging. In this review we summarize the role of LNCRNAs in DKD and the existing antisense oligonucleotide therapy that may provide precise and targeted medicine to treat DKD in this postgenomic era.