Long-range alpha detection (LRAD) has been used to measure alpha particles emitting contamination inside decommissioned steel pipes. There exists a complex nonlinear relationship between input parameters and measuring results. The input parameters, for example, pipe diameter, pipe length, distance to radioactive source, radioactive source strength, wind speed, and flux, exhibit different contributions to the measuring results. To reflect these characteristics and estimate alpha radioactivity as exactly as possible, a hybrid partial least square back propagation (PLSBP) neural network approach is presented in this paper. In this model, each node in the input layer is weighted, which indicates that different input nodes have different contributions on the system and this finding has been little reported. The weights are determined by the PLS. After this modification, a variety of normal three-layered BP networks are developed. The comparison of computational results of the proposed approach with traditional BP model and experiments confirms its clear advantage for dealing with this complex nonlinear estimation. Thus, an integrated picture of alpha particle activity inside contaminated pipes can be obtained.