Intrinsically disordered proteins and regions typically lack a well-defined structure and thus fall outside the scope of the classic sequence-structure-function relationship. Hence, classic sequence-or structure-based bioinformatic approaches are often not well suited to identify homology or predict the function of unknown intrinsically disordered proteins. Here, we give selected examples of intrinsic disorder in plant proteins and present how protein function is shared, altered or distinct in evolutionary distant organisms. Furthermore, we explore how examining the specific role of disorder across different phyla can provide a better understanding of the common features that protein disorder contributes to the respective biological mechanism. being defined by a separate set of parameters compared to their structured and globular counterparts [7]. Hence, identification of distantly related IDPs cannot rely on structure, which can help to detect relationships of folded proteins that would remain undetected by conventional sequence-based methods [8]. Methods that use antibodies to metazoan proteins to identify putative plant homologues may result in a higher incidence of artefacts when compared to folded protein targets, due to the smaller size of disordered epitopes and their comparably higher sensitivity to epitope variation [9].In contrast to folded proteins, IDPs and IDRs show an overall increased rate of evolution, while these rates can strongly vary between different parts of the IDP [10,11]. Moreover, disordered regions appear to be more permissive to mutation, further complicating sequence-function analysis. Overall, genome duplication events seem to influence the distribution of IDRs within genomes, as the amount of identical paralogous IDRs positively correlates with the number of chromosomes [12]. Interestingly, proteins can display different modes of how sequence conservation can relate to disorder as a functional feature [13]. While in some cases only the disorder itself is conserved, but not the sequence facilitating it (flexible disorder), other IDPs retain disorder together with a highly conserved sequence (constrained disorder). Short-linear motifs (SLiMs) represent conserved functional modules that can mediate low-affinity interactions and are often interspersed by regions of flexible disorder [14]. As many alignment algorithms require long stretches of sequence similarity to satisfy statistical significance, the high modality and low complexity of SLiMs can obscure the search for homologous sequences considerably. Due to their limited size (7-12 residues), these motifs can easily develop in unrelated proteins in convergent evolution. Furthermore, post-translational modifications (PTMs) that often regulate IDP function complicate the analysis, as they can drastically alter the biophysical features of a protein and phosphorylation sites display short and weakly conserved motifs that are often difficult to detect via computational sequence analysis [15].Within protein interaction networks, IDPs ofte...