Crop simulation models are an important tool for assessing agroecosystem performance and the impact of agrotechnologies on soil cover condition. However, the high uncertainty and labor intensiveness of long-term weather forecasting limits the applicability of such models. A possible solution may be to use time series forecasting models (SARIMAX and Prophet) and artificial neural-network-based technologies (Neural Prophet). This work compares the applicability of these methods for modeling soil condition dynamics and agroecosystem performance using the MONICA simulation model for Voronic Chernozems in the Kursk region of Russia. The goal is to determine which weather indicators are most important for the yield forecast and to choose the most appropriate methods for forecasting weather scenarios for agricultural modeling. Crop rotation of soybean and sugar beet was simulated, with agricultural techniques and fertilizer usage considered as factors. We demonstrated the high sensitivity of aboveground biomass production and soil moisture dynamics to daily temperature fluctuations and precipitation during the vegetation period. The dynamics of the leaf area index and nitrate content showed less sensitivity to the daily fluctuations of temperature and precipitation. Among the proposed forecasting methods, both SARIMAX and the Neural Prophet algorithm demonstrated the ability to forecast weather to model the dynamics of crop and soil conditions with the highest degree of approximation to actual observations. For the dynamic of the crop yield of soybean, the SARIMAX model exhibited the most favorable coefficient of determination, R2, while for sugar beet, the Neural Prophet model achieved superior R2 levels of 0.99 and 0.98, respectively.