Many challenges currently facing agriculture require longterm data on landscape-scale hydrologic responses to weather, such as from the Goodwater Creek Experimental Watershed (GCEW), located in northeastern Missouri, USA. This watershed is prone to surface runoff despite shallow slopes, as a result of a significant smectitic clay layer 30 to 50 cm deep that restricts downward flow of water and gives rise to a periodic perched water table. This paper is the first in a series that documents the database developed from GCEW. The objectives of this paper are to (i) establish the context of long-term data and the federal infrastructure that provides it, (ii) describe the GCEW/ Central Mississippi River Basin (CMRB) establishment and the geophysical and anthropogenic context, (iii) summarize in brief the collected research results published using data from within GCEW, (iv) describe the series of papers this work introduces, and (v) identify knowledge gaps and research needs. The rationale for the collection derives from converging trends in data from longterm research, integration of multiple disciplines, and increasing public awareness of increasingly larger problems. The outcome of those trends includes being selected as the CMRB site in the USDA-ARS Long-Term Agro-Ecosystem Research (LTAR) network. Research needs include quantifying watershed scale fluxes of N, P, K, sediment, and energy, accounting for fluxes involving forest, livestock, and anthropogenic sources, scaling from nearterm point-scale results to increasingly long and broad scales, and considering whole-system interactions. This special section informs the scientific community about this database and provides support for its future use in research to solve natural resource problems important to US agricultural, environmental, and science policy.