Membrane fouling is an inevitable obstacle of polyamide composite forward osmosis (FO) membranes in oily wastewater treatment. In this study, zwitterionic arginine (Arg) is grafted onto nascent self-made FO polyamide poly(ether sulfone) (PA-PES) membrane, imparting superior hydrophilic, antifouling, and antibacterial properties to the membrane. Detailed characterizations revealed that the Arg-modified (Arg-PES) membrane presented obviously surface positively charged and unique morphology. Results showed that our strategy endowed the optimized membrane, the water flux increased by 113.2% compared to the pristine membrane, respectively, meanwhile keeping high NaCl rejection > 93.9% (with DI water as feed solution and 0.5 M NaCl as draw solution, FO mode). The dynamic fouling tests indicated that the Arg-PES membranes exhibited much improved antifouling performance towards oily wastewater treatment. The flux recovery ratios of the membrane were as high as 92.0% for cationic emulsified oil (cetyl pyridinium chloride, CPC), 87.0% for neutral emulsified oil (Tween-80), and 86.0% for anionic emulsified oil (sodium dodecyl sulfate, SDS) after washing, respectively. Meanwhile, the Arg-PES membranes assembled with guanidine cationic groups exhibited an enhanced antibacterial property against E. coli, which exhibited a high antibacterial efficiency of approximately 96%. Consequently, the newly arginine functionalized FO membrane possesses impressive antifouling performance, while simultaneously resisting bacterial invasion, thus rendering it an ideal alternative for oily wastewater treatment in the FO process.