Despite a developing literature on urban streams, few studies have addressed the timing and mechanisms of urban-induced stream hydrogeomorphic adjustment on biotic assemblages. Here, we investigated the relationships between urbanization-driven annual changes in fluvial geomorphic characteristics and fish assemblages in 12 headwater streams in the Columbus Metropolitan Area (CMA), Ohio (USA) over 3-5 years. Multiple stream hydrogeomorphic characteristics changed over time including slope (0.1% decrease on average), discharge (39% decrease), and shear stress (29% decrease), some in concert with one another (e.g., slope and shear stress). Species-specific fish associations with hydrogeomorphic associations varied in nature and strength by year and thus were somewhat equivocal. At the assemblage level, we observed a negative relationship between D 50 (median sediment particle size) and % tolerant individuals as well as a positive trend between incision ratio and % generalists over study years. Study reaches with higher total catchment imperviousness were associated with both finer median sediment size (R 2 = 0.19) and lower assemblage diversity (R 2 = 0.55). These results contribute to current understanding of the drivers of fish assemblages in urbanizing catchments, and point to urbaninduced hydrogeomorphic alterations as one mechanism through which land-use changes influence in-channel characteristics important to aquatic biota.