In order to limit various alien species by ballast water, electrolysis of ballast water is used to sterilize microorganisms. In this process, total residual oxidizer (TRO) is produced, and it is necessary to measure the precise TRO concentration to prevent excessive disinfection by-products and limit emissions. In this TRO concentration measurement system, a white LED module and RGB sensor are used to measure the absorbance through the DPD colorimetric method. The intensity of LED light has a little error for each LED module. In addition, the effect of LED aging in which the intensity of the light source decreases with the elapsed time. For this reason, the TRO concentration measurement error increases. To solve this problem, we propose an LED module calibration algorithm by current PI control and an optimal LED operation time derivation to reduce the effect of LED aging. A large number of LED modules were applied to various seawater environments. In the conventional method, the measurement accuracy and precision of the average TRO concentration were 6.56% and 9.54%, respectively, and measurement accuracy and precision through the proposed algorithm and LED aging optimization were greatly reduced to 0.10% and 0.85%, respectively. In addition, we derived that LED aging was minimized when the measurement time of LED light was 1 s and the turn-off time of the LED light was 10 s. Through these experimental results, we confirmed that the non-uniform LED light is improved by the proposed algorithm. Furthermore, the standard values for TRO concentration measurement (accuracy: less than 5%, precision: less than 2%) were satisfied.