An increasing amount of information today is generated, exchanged, and stored digitally. This also includes long-lived and highly sensitive information (e.g., electronic health records, governmental documents) whose integrity and confidentiality must be protected over decades or even centuries. While there is a vast amount of cryptography-based data protection schemes, only few are designed for long-term protection. Recently, Braun et al. (AsiaCCS'17) proposed the first long-term protection scheme that provides renewable integrity protection and information-theoretic confidentiality protection. However, computation and storage costs of their scheme increase significantly with the number of stored data items. As a result, their scheme appears suitable only for protecting databases with a small number of relatively large data items, but unsuitable for databases that hold a large number of relatively small data items (e.g., medical record databases). In this work, we present a solution for efficient long-term integrity and confidentiality protection of large datasets consisting of relatively small data items. First, we construct a renewable vector commitment scheme that is information-theoretically hiding under selective decommitment. We then combine this scheme with renewable timestamps and informationtheoretically secure secret sharing. The resulting solution requires only a single timestamp for protecting a dataset while the state of the art requires a number of timestamps linear in the number of data items. We implemented our solution and measured its performance in a scenario where 12 000 data items are aggregated, stored, protected, and verified over a time span of 100 years. Our measurements show that our new solution completes this evaluation scenario an order of magnitude faster than the state of the art.This work has been co-funded by the DFG as part of project S6 within CRC 1119 CROSSING. A short version of this paper appears in the proceedings of ICISC'18.An overview of existing long-term integrity schemes is given by Vigil et al. in [25]. In contrast to integrity protection, confidentiality protection cannot be prolonged. There is no protection against an adversary that stores ciphertexts today, waits until the encryption is weakened, and then breaks the encryption and obtains the plaintexts. Thus, if long-term confidentiality protection is required, then strong confidentiality protection must be applied from the start. A very strong form of protection can be achieved by using information theoretically secure schemes, which are invulnerable to computational attacks. For example, key exchange can be realized using quantum key distribution [10], encryption can be realized using one-time pad encryption [23], and data storage can be realized using proactive secret sharing [14]. An overview of information theoretically secure solutions for long-term confidentiality protection is given by Braun et al. [4]. Recently, Braun et al. proposed LINCOS [3], which is the first long-term secure storage architecture t...