OBJECTIVE: To assess microbicide function and macrophage viability after in vitro cellular infection by methicillin-sensitive/resistant Staphylococcus aureus in nourished rats and rats subjected to neonatal malnutrition. METHODS: Male Wistar rats (n=40) were divided in two groups: Nourished (rats suckled by dams consuming a 17% casein diet) and Malnourished (rats suckled by dams consuming an 8% casein diet). Macrophages were recovered after tracheotomy, by bronchoalveolar lavage. After mononuclear cell isolation, four systems were established: negative control composed exclusively of phagocytes; positive control composed of macrophages plus lipopolysaccharide; and two testing systems, macrophages plus methicillin-sensitive Staphylococcus aureus and macrophages plus methicillin-resistant Staphylococcus aureus. The plates were incubated in a humid atmosphere at 37 degrees Celsius containing 5% CO2 for 24 hours. After this period tests the microbicidal response, cytokine production, and cell viability were analyzed. The statistical analysis consisted of analysis of variance (p<0.05). RESULTS: Malnutrition reduced weight gain, rate of phagocytosis, production of superoxide anion and nitric oxide, and macrophage viability. Production of nitrite and interleukin 18, and viability of macrophages infected with methicillin-resistant Staphylococcus aureus were lower. CONCLUSION: The neonatal malnutrition model compromised phagocyte function and reduced microbicidal response and cell viability. Interaction between malnutrition and the methicillin-resistant strain decreased the production of inflammatory mediators by effector cells of the immune response, which may compromise the immune system's defense ability.