Nucleophosmin (NPM1) is a multifunctional phospho-protein with critical roles in ribosome biogenesis, tumor suppression, and nucleolar stress response. Here we show that the N-terminal oligomerization domain of NPM1 (Npm-N) exhibits structural polymorphism by populating conformational states ranging from a highly ordered, folded pentamer to a highly disordered monomer. The monomerpentamer equilibrium is modulated by posttranslational modification and protein binding. Phosphorylation drives the equilibrium in favor of monomeric forms, and this effect can be reversed by Npm-N binding to its interaction partners. We have identified a short, arginine-rich linear motif in NPM1 binding partners that mediates Npm-N oligomerization. We propose that the diverse functional repertoire associated with NPM1 is controlled through a regulated unfolding mechanism signaled through posttranslational modifications and intermolecular interactions.NMR | X-ray crystallography N ucleophosmin (NPM1) is a highly abundant nucleolar phosphoprotein with functions associated with ribosome biogenesis (1, 2), maintenance of genome stability (1), nucleolar stress response (3), modulation of the p53 tumor suppressor pathway (4), and regulation of apoptosis (5). Importantly, genetic alterations that affect the NPM1 protein sequence or expression level are associated with oncogenesis. For example, NPM1 overexpression was observed in a variety of solid tumors, and mutations within the protein and genetic translocations involving NPM1 are associated with hematological malignancies (reviewed in ref. 6).NPM1 primarily resides in the nucleolus which is a membraneless compartment and the site of rRNA synthesis, processing, and assembly with ribosomal proteins (7). In the nucleolus, NPM1 is involved in processing preribosomal RNA (4), chaperoning the nucleolar entry of ribosomal (1, 8) and viral (9) proteins, and stabilizing the alternate reading frame (ARF) tumor suppressor protein (4, 5, 10, 11), while also playing a role in the shuttling of preribosomal particles assembled in the nucleolus to the cytoplasm (12-14).NPM1 is a member of the nucleoplasmin protein family, which includes the histone chaperones NPM2 and NPM3. These proteins share a conserved N-terminal oligomerization domain that mediates homopentamerization (15). Disruption of NPM1 oligomerization by a small molecule (16) or an RNA aptamer (17) causes exclusive nucleoplasmic localization, loss of colocalization with ARF, and induction of p53-dependent apoptosis (16, 17). These observations suggest that changes in the oligomeric state of NPM1 may influence its biological functions. However, although it is hypothesized (1) that NPM1 function is modulated through control of its oligomeric state, experimental data are currently lacking. Intriguingly, NPM1 exhibits 40 putative phosphorylation sites, the majority of which are evolutionarily conserved (18,19). Modification of these sites that is influenced by subcellular localization and cell cycle phase (20, 21) modulates the biological function...