Background: This study aims to evaluate the effects and safety of laparoscopic-based perivascular renal sympathetic nerve denervation (RDN) in a porcine model fed a high-fat diet. Method: Thirty-six high-fat diet-fed Bama minipigs were randomly divided into an RDN group (n = 18), in which minipigs received laparoscopic-based perivascular RDN, and a sham group (n = 18). All pigs were fed the high-fat diet after the operation to establish a model of obesity-induced hypertension. Bama pigs in the RDN and sham groups were killed at 3 time points [2 days after RDN (n = 6), day 90 (n = 6) and day 180 (n = 6)]. Result: The systolic blood pressure (SBP) and noradrenaline (NE) concentration in the kidney tissue were significantly lower in the RDN group than in the sham group at 2 days (113.83 ± 3.26 mmHg vs 129.67 ± 3.32 mmHg, P = 0.011, and 112.02 ± 17.34 ng/g vs 268.48 ± 20.61 ng/g, P < 0.001, respectively), 90 days (116.83 ± 3.88 mmHg vs 145.00 ± 4.22 mmHg, P = 0.001, respectively) and 180 days (129.33 ± 2.87 mmHg vs 168.57 ± 2.86 mmHg, P < 0.001, and 152.15 ± 16.61 ng/g vs 318.97 ± 24.84 ng/g, P < 0.001, respectively) after the operation. The diastolic blood pressure (DBP) was significantly lower in the RDN group than in sham group at 90 and 180 days after the operation (72.17 ± 2.7 mmHg vs 81.50 ± 2.22 mmHg, P = 0.037, and 76.83 ± 2.75 mmHg vs 86.33 ± 2.22 mmHg P = 0.021, respectively). Based on the pathological evaluation, the renal sympathetic nerve fascicles were successfully disrupted by radiofrequency energy after laparoscopic-based perivascular RDN, but the intima was intact. Tyrosine hydroxylase (TH) expression was decreased, while the expression of the S100 protein was increased in treated renal arteries after RDN. Conclusions: Laparoscopic-based perivascular RDN prevented the occurrence and development of hypertension, and thus it may be an efficient and safe method for controlling blood pressure in an experimental model.