In order to alleviate the conflict between populations and land-resource, Tianjin has adopted multi-phase reclamation projects to formed large-scale artificial reclamation land. However, the reclamation areas are susceptible to subsidence, which demonstrate a serious threat to infrastructure and people’s lives and property. The SBAS-InSAR was used to acquired surface deformation of Tianjin Binhai New Area from January 2017 year to December 2022 year, analyzed in depth the response relationship between land subsidence and reclamation projects time as well as the land use type. The results show that the Lingang Industrial Zone was the earliest to be reclaimed, with extensive reclamation completed by 2016 year, while Nangang Industrial Zone and Hangu Port started reclamation projects in 2009 year, some areas are still currently under construction. There is a strong correlation between surface deformation and reclamation time, the severe land subsidence occurred over newly reclaimed areas. Surface deformation gradually intensifies from west to east, the maximum surface settlement in Nangang Industrial Zone, Lingang Industrial Zone from the west to the east has changed from -50 mm to -890 mm,45 mm to -580 mm, respectively, reclamation area of Hangu Port with maximum surface deformation is -250 mm. Significant differences deformation among different land use types, which reclamation projects completed in the same time. Subsidence is positively correlated with surface load, in areas with higher surface loads, the surface settlement is also severer,the average surface settlement for the heavy shipyard, 67 grain storage tanks, 27 grain storage tanks, road, and bare land are -201 mm, -166 mm, -107 mm, -64 mm, and -43 mm, respectively. This study reveals significant differences of surface deformation in the reclamation completed at different times and the load is the main driving factor of settlement difference in the reclamation land completed at the same time. Which has important guiding significance for preventing and controlling geological disasters in the reclamation area and later development planning.