Parkinson's disease (PD) is characterized by a progressive degeneration of nigrostriatal dopaminergic neurons. The precise mechanisms are still unknown. Since the neuronal communications are inherently electrical and chemical in nature, dual-mode detection of PD-related neuroelectrical and neurochemical information is essential for PD research. Subthalamic nucleus (STN) highfrequency stimulation (HFS) can improve most symptoms of PD patients and decrease the dosage of antiparkinsonian drugs. The mechanism of STN-HFS for PD still remains elusive. In this study, a silicon-based dual-mode microelectrode array (MEA) probe was designed and fabricated, and systematic dual-mode detection methods were established. The recording sites were modified using Pt nanoparticles and Nafion to improve the signal-to-noise (SNR) ratio. To evaluate its applicability to PD research, in vivo electrophysiological and electrochemical detection was performed in normal and hemiparkinsonian models, respectively. Through comparison of the dual-mode signals, we demonstrated the following in a PD monkey: (1) the maximum dopamine concentration in the striatum decreased by 90%; (2) the spike firing frequency increased significantly, especially in the region of the cortex; (3) the spectrogram analysis showed that much power existed in the 0-10 Hz frequency band; and (4) following repeated subthalamic nucleus high-frequency stimulation trials, the level of DA in the striatum increased by 16.5 μM, which led to a better elucidation of the mechanism of HFS. The dual-mode MEA probe was demonstrated to be an effective tool for the study of neurological disorders.