Ocular diseases can significantly impact vision and quality of life through pathophysiological alterations to the structure of the eye. The management of these conditions often involves a combination of pharmaceutical interventions, surgical procedures, and laser therapy. Laser technology has revolutionized many medical fields, including ophthalmology, offering precise and targeted treatment options that solve some of the unmet needs of other therapeutic strategies. Conventional laser techniques, while effective, can generate excessive thermal energy, leading to collateral tissue damage and potential side effects. Compared to conventional laser techniques, micropulse laser therapy delivers laser energy in a pulsed manner, minimizing collateral damage while effectively treating target tissues. The present paper highlights the advantages of micropulse laser therapy over conventional laser treatments, presents the implications of applying these strategies to some of the most prevalent ocular diseases, and highlights several types and mechanisms of micropulse lasers. Although micropulse laser therapy shows great potential in the management of ocular diseases, further research is needed to optimize treatment protocols, evaluate long-term efficacy, and explore its role in combination therapies.