Objectives
This study aims to (1) review machine learning (ML)-based models for early infection diagnostic and prognosis prediction in post-acute care (PAC) settings, (2) identify key risk predictors influencing infection-related outcomes, and (3) examine the quality and limitations of these models.
Materials and Methods
PubMed, Web of Science, Scopus, IEEE Xplore, CINAHL, and ACM digital library were searched in February 2024. Eligible studies leveraged PAC data to develop and evaluate ML models for infection-related risks. Data extraction followed the CHARMS checklist. Quality appraisal followed the PROBAST tool. Data synthesis was guided by the socio-ecological conceptual framework.
Results
Thirteen studies were included, mainly focusing on respiratory infections and nursing homes. Most used regression models with structured electronic health record data. Since 2020, there has been a shift toward advanced ML algorithms and multimodal data, biosensors, and clinical notes being significant sources of unstructured data. Despite these advances, there is insufficient evidence to support performance improvements over traditional models. Individual-level risk predictors, like impaired cognition, declined function, and tachycardia, were commonly used, while contextual-level predictors were barely utilized, consequently limiting model fairness. Major sources of bias included lack of external validation, inadequate model calibration, and insufficient consideration of data complexity.
Discussion and Conclusion
Despite the growth of advanced modeling approaches in infection-related models in PAC settings, evidence supporting their superiority remains limited. Future research should leverage a socio-ecological lens for predictor selection and model construction, exploring optimal data modalities and ML model usage in PAC, while ensuring rigorous methodologies and fairness considerations.