Climate and landscape change are expected to significantly affect trophic interactions, which will especially harm top predators such as the golden eagle Aquila chrysaetos. Availability of optimal prey is recognized to influence reproductive success of raptors on a regional scale. For the golden eagle, medium‐sized prey species between 0.5 and 5 kg are widely considered to be optimal prey during the breeding season, whereas smaller and larger species are deemed as energetically sub‐optimal. However, knowledge about the effects of optimal prey availability is still scarce on larger scales. To decrease this apparent knowledge gap, we combined biogeographical information on range margins with information about the foraging behaviour and reproductive success of golden eagles from 67 studies spanning the Northern Hemisphere. We hypothesized that availability of optimal prey will affect foraging behaviour and breeding success and, thus, distribution patterns of the golden eagle not only on a local but also on a continental scale. We correlated the diet breadth quantifying foraging generalism, breeding success and proportions of small (< 0.5 kg), medium (0.5–5 kg) and large‐sized (> 5 kg) prey species within the diet with the minimum distance of the examined eagles to the actual species distribution boundary. Closer to the range edge, we observed decreased proportions of medium‐sized prey species and decreasing breeding success of golden eagles. Diet breadth as well as proportions of small and large‐sized prey species increased, however, towards the range edge. Thus, availability of optimal‐sized prey species seems to be a crucial driver of foraging behaviour, breeding success and distribution of golden eagles on a continental scale. However, underlying effects of landscape characteristics and human influence on optimal prey availability has to be investigated in further large‐scale studies to fully understand the major threats facing the golden eagle and possibly other large terrestrial birds of prey.