As a preliminary and major step for land use planning of the coming years, the study of variability of the past decades' climatic conditions with comprehensive indicators is of high importance. Given the fact that one of the affected areas by climatic change includes variability of thermal comfort, this study uses the physiologically equivalent temperature (PET) to identify and evaluate bioclimatic conditions of 40 meteorological stations in Iran. In this study, PET changes for the period of 1960 to 2010 are analyzed, with the use of Mann-Kendall non-parametric test and Pearson parametric method. The study focuses particularly on the diversity in spatio-temporal distribution of Iran's bioclimatic conditions. The findings show that the mean frequency percentage of days with comfort is 12.9 % according to the total number of selected stations. The maximum and minimum frequency percentage with values of 17.4 and 10.3 belong to Kerman and Chabahar stations, respectively. The findings of long-term trend analysis for the period of 1960-2010 show that 55 % of the stations have significant increasing trend in terms of thermal comfort class based on the Pearson method, while it is 40 % based on Mann-Kendall test. The results indicate that the highest frequency of days with thermal comfort in the southern coasts of Iran relates to the end of autumn and winter, nevertheless, such ideal conditions for the coastal cities of Caspian Sea and even central stations of Iran relate to midspring and mid-autumn. Late summer and early autumn along with late spring can be identified as the most ideal times in the west and northwest part of Iran. In addition, the most important inhibiting factors of thermal comfort prove to be different across the regions of Iran. For instance, in the southern coasts, warm to very hot bioclimatic events and in the west and northwest regions, cold to very cold conditions turn out to be the most important inhibiting factors. When considering the variations across the studied period, an increase in the frequency of thermal comfort condition is observed in almost half of the stations. Moreover, based on Pearson and Mann-Kendall methods, the trend of changes in monthly averages of PET has decreased in most stations and months, which can lead to different consequences in each month and station. Thus, it is expected that due to PET changes in recent decades and to the intensified global warming conditions, Iran's bioclimatic conditions change in a way that transfers the days with comfort to early spring and late autumn.