The duration of sunshine is one of the important indicators and one of the variables for measuring the amount of solar radiation collected in a particular area. Duration of solar brightness has been used to study atmospheric energy balance, sustainable development, ecosystem evolution and climate change. Predicting the average values of sunshine duration (SD) for Duhok city, Iraq on a daily basis using the approach of artificial neural network (ANN) is the focus of this paper. Many different ANN models with different input variables were used in the prediction processes. The daily average of the month, average temperature, maximum temperature, minimum temperature, relative humidity, wind direction, cloud level and atmospheric pressure were used as input parameters in order to obtain the daily average of sunshine duration (SD) as the output. The eight-year data were divided into two categories. The first category covers whole years (annually) and the second category is seasonal. To recognize and assess the influence of different input parameters on sunshine duration, six models of ANN have been evolved. The findings showed that in the annual models, the outcomes of RMSE, MAE and R for the model with input parameters (Month, Cloud Level and Average Temperature) were the best results 1.82, 1.175 and 0.89, respectively. As for the season models, the outcomes of RMSE, MAE and R for the autumn season were the best results 1.450, 1.009 and 0.94, respectively. Accordingly, the performance of the artificial neural network is considerably effective in predicting the sunshine duration.